If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6.25x^2+10x-2.5=0
a = 6.25; b = 10; c = -2.5;
Δ = b2-4ac
Δ = 102-4·6.25·(-2.5)
Δ = 162.5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-\sqrt{162.5}}{2*6.25}=\frac{-10-\sqrt{162.5}}{12.5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+\sqrt{162.5}}{2*6.25}=\frac{-10+\sqrt{162.5}}{12.5} $
| 5x+2x=4x+5 | | 4x-9/6=x-(2x+7/2) | | 3^(x+2)=(3^x)+72 | | 2g=12(3/2g−1)+11 | | 2.75f-25+3f=4(f-15) | | 2g=12(32 g−1)+11 | | Y=5(2y-6)-2 | | 15.−3x+23=−56 | | (((9^x^2)/(9^4x)=1/59049)+20)*200000 | | 207-3(x+2)=6 | | Y=10y-28 | | 17-4m=27 | | (x*2)+7=x-2 | | 0x+8=0x+5 | | 37x-1+35x+5=180 | | (2x-17)÷3=51 | | 17x+5-13x=21 | | 3x+3=—2x+8 | | 3x+3=–2x+8 | | -10j-10j-10=10 | | 3f(-3)=-15 | | 7(5x-3)=128 | | -3(3f)=-15 | | 10x–5=45 | | 2x+6x-42=318 | | ½x-40=20 | | -3/3f=-15 | | x-3=5x=4 | | -6+(-2)/d=-12 | | -6+-2/d=-12 | | -6+(-2/d)=-12 | | -4/5-4/3u=-3/2 |